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Abstract: Remote sensing for water quality evaluation has advanced, with more satellites providing
longer data series. Validations of remote sensing-derived data for water quality characteristics, such as
chlorophyll-a, Secchi depth, and turbidity, have often remained restricted to small numbers of water
bodies and have included local calibration. Here, we present an evaluation of > 100 water bodies in
Germany covering different sizes, maximum depths, and trophic states. Data from Sentinel-2 MSI
and Sentinel-3 OLCI were analyzed by two processing chains. Our work focuses on analysis of the
accuracy of remote sensing products by comparing them to a large in situ data set from governmental
monitoring from 13 federal states in Germany and, hence, achieves a national scale assessment. We
quantified the fit between the remote sensing data and in situ data among processing chains, satellite
instruments, and our three target water quality variables. In general, overall regressions between in
situ data and remote sensing data followed the 1:1 regression. Remote sensing may, thus, be regarded
as a valuable tool for complementing in situ monitoring by useful information on higher spatial and
temporal scales in order to support water management, e.g., for the European Water Framework
Directive (WFD) and the Bathing Water Directive (BWD).

Keywords: validation; chlorophyll-a; Secchi depth; turbidity; Sentinel-2 MSI; Sentinel-3 OLCI

1. Introduction

Remote sensing for water quality evaluation has been applied in many water bodies.
Different sensors were used under different conditions, both in freshwater and in the
marine environment [1–11]. Water quality characteristics that can be evaluated by remote
sensing encompass temperature, turbidity, Secchi depth, chlorophyll-a concentration, or-
ganic matter absorption, and cyanobacteria occurrence. Many of the previous studies
focused on the general calibration, parameterization, and validation of a geographically
and/or temporally limited data set of such water quality characteristics [4,12] and are not
transferable to other water bodies. They aimed to find the best algorithms to achieve the
best correlation between water quality characteristics measured in situ and evaluated from
remote sensing and provide a number of solutions for their specific target. However, it
remained questionable to what extent such locally optimized applications can really be
implemented at large scales to support decision-making. Also, to realise a return of invest-
ment in the several satellite missions generally requires applications at large scales and
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in governmentally relevant environmental policies to allow for exploiting the synoptical
investigation of water quality in larger ensembles of waterbodies (lakes and reservoirs)
exhibiting varying characteristics.

In governmental monitoring, however, such localized calibration and fitting between
in situ and remote sensing data is neither doable nor wanted. Instead, well characterised
and transferable methods that can be applied to various water bodies without changing
parameterisations are required (compare projects in Supplementary Information SI1; [13]).
In order to be economically feasible, monitoring must be performed with as few resources
as possible and at the same time must provide detailed information on the status and
dynamics of water quality. In that respect, remote sensing is a promising method that may
complement existing in situ measurements [14–16]. However, the crucial question remains
as to how well the remote sensing data really reproduce in situ data at a larger scale and in
highly diverse water bodies.

Online interactive tools for visualizing and analysing remote sensing data and for
comparing them with in situ data were developed in the academic environment [11,17,18].
These can often only be used by specifically trained experts, however, and cannot easily
be implemented by authorities where the limited personnel are confronted with the im-
plementation of national and international water policies, such as the European Union
Water Framework Directive (WFD; [19]), and the Bathing Water Directive (BWD; [20]).
Public applications of remote sensing products rather have to be realized in a ready-to-use,
naïve, and fully reproducible way, i.e., without having to decide on multiple parametriza-
tions or algorithms. In Germany and several other European countries, commercial but
science-based products are, therefore, important for initiating an efficient governmental use
of satellite-based products. For our study, we investigated the operational services from
two companies providing web-based interactive tools for data processing and easy-to-use
data visualisation and intuitive data analysis: CyanoAlert® (Brockmann Consult GmbH,
Hamburg, Germany; BC from hereon) and eoapp AQUA® (EOMAP GmbH & Co. KG,
Seefeld, Germany; EOMAP from hereon). Both processing chains allow users to quickly
derive multiple water quality variables of water bodies with well-established algorithms
and additionally allow for an intuitive and effortless data analysis. In this study, we focused
on comparing in situ data collected by German authorities on more than 100 lakes and
reservoirs with the company-provided remote sensing data to allow a comparison with fit
for purpose data.

Beyond the governmental status assessment of water bodies, e.g., within EU WFD [19],
satellite observations also offer extended information for water resources management
in water bodies (lakes and reservoirs) targeting the effects of land cover and nutrient
loading [21], the detection of algal blooms [22,23], regime shifts [24], or responses to extreme
events and climate change [5,25,26]. Given the spatial and temporal resolution of satellites,
their global coverage, and their relatively low costs for end users, such applications can
contribute highly valuable information that cannot easily be realized by classical in situ
samplings and, thus, complement in situ monitoring in this respect [15].

Moreover, tracking unprecedented changes requires more intense observation. In
some cases, it is important to retrospectively track when a development, e.g., deterioration,
began. The required field studies are not possible in hindsight, but satellite archives reach
back over many years—in the case of the optical ESA Sentinel satellites, the archives reach
back to 2016. Irani Rahaghi et al. [27], for example, convincingly demonstrated that remote
sensing observations contribute to understanding the emergence of an algal bloom in
Lake Geneva.

The application of satellite monitoring products in governmental water policies and
decision-making appears promising, e.g., the monitoring of chlorophyll-a or trophic state
by Copernicus satellites was proposed as a future extension of European-scale water quality
monitoring [28]. In Finland, remote sensing data have already been used to comply with
requirements from the WFD [14,29]. Such applications demonstrate the emerging synergies
by including satellite-derived products in water quality assessment but also point to the
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importance of proper validation of these data against in situ observation and a clarification
of uncertainties, which are the major research objectives in this study that focuses on
the national scale of Germany. This task of broad-scale validation is not easy because in
situ monitoring is often realized at a very low temporal resolution (multi-year intervals;
1–6 years between campaigns with monthly sampling frequencies) and temporal matching
of sampling and satellite overpass is problematic (compare [30]). Also, disturbing effects
from clouds, sunglint, or mixed pixels reduce the availability of remote sensing data. This
leads to the fact that evaluation data sets are often much smaller than the data obtained from
overpasses, which is another reason for often weak validation. Therefore, we invested effort
into generating a nation-wide data set of more than 100 water bodies for validation. Using
data from water authorities meant, however, that the in situ database was heterogeneous.

Currently, relevant satellite sensors for inland water quality include Landsat 8 and 9
(OLI; “Operational Land Imager”) from USGS, MODIS (“Moderate Resolution Imaging
Spectroradiometer”), and VIIRS (“Visible Infrared Imaging Radiometer Suite”) from the
NASA satellite programme, and Sentinel-2 MSI (“MultiSpectral Instruments”) and -3 OLCI
(“Ocean and Land Colour Instruments”) from the European Copernicus programme. The
two Sentinel-2 satellites (A and B) were launched in 2015 and 2017, respectively, and carry
multispectral instruments (MSI) on board. Sentinel-2A and Sentinel-2B each have a repeat
cycle of 10 days. The imagery is obtained at spatial resolutions of 10 m, 20 m, and 60 m,
depending on the spectral band [31,32]. In total, 13 spectral bands are measured, covering
the visible to shortwave infrared wavelengths [33]. Also, the Sentinel-3 mission consists of
two satellites, A and B, with daily repeat cycles over Middle Europe. They were launched
in 2016 and 2017, respectively [34]. A total of 21 spectral bands are measured by the OLCI,
at a spatial resolution of 300 m.

By the operation of two sensors at a time, the repetition rate is doubled for Sentinel
satellites [33,34]. Over Germany, depending on the exact location of the waterbody, the
return rates are 1–2 days for Sentinel-3 [34] and 2– 5 days for Sentinel-2 [33], while Landsat
8 and 9 pass every 16 days, respectively (8 days combined, since Landsat 8 and 9 carry the
same sensors and can, therefore, be treated as equivalent) [35]. Given this better temporal
resolution, in this study, we focus on remote sensing data from the Copernicus program (i.e.,
Sentinel-2/-3). As target variables, we chose chlorophyll-a concentration, turbidity, and
Secchi depth, because these variables are usually available as in situ data in governmental
monitoring programs.

The ambition of this study is to generate trust in remote sensing products for decision-
making and environmental observation as a complement to existing in situ monitoring.
Our research aims are focused on (a) establishing a nationwide data collection of in situ
water quality monitoring data of more than 100 waterbodies, (b) quantifying the accuracy
and robustness of using remote sensing data to derive water quality, here, in terms of
chlorophyll-a, turbidity, and Secchi depth, without site-specific parameter optimization,
and (c) analyzing for potential differences in accuracy/robustness with respect to satellites
and processing chains. Based on these analyses, we hope to draw conclusions on the
opportunities and limits of remotely sensed water quality products in governmental or
public contexts.

2. Materials and Methods
2.1. In Situ Data

We collected in situ data for turbidity, chlorophyll-a, and Secchi depth (see also Table 1)
from 112 waterbodies (Figure 1, Table S1) obtained from 13 German Federal authorities (for
more details refer to Supplementary Information SI1 and SI2). They comprised stations
where regular monitoring for bathing water quality and/or within WFD-monitoring were
performed. In situ data were used from 1 January 2016 until 31 December 2020.
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Table 1. Exclusion criteria for in situ data. In situ and satellite-derived data were only used within the
ranges detailed in this table.

Variable Unit Minimum Maximum

Chlorophyll-a µg/L 0.01 400
Turbidity FNU 0.01 100

Secchi depth m 0.05 20
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Figure 1. Investigated waterbodies (dark blue) in Germany within the federal states. Coordinate
system EPSG 4326, WGS84. Inset map: situation of Germany within Europe.

2.2. Chemical and Physical Properties: Chlorophyll, Secchi Depth, and Turbidity

Measurements were conducted according to national and EU standards [36,37] by
accredited laboratories mostly following WFD requirements. We excluded unlikely values
by defining realistic data ranges according to Table 1, both from the in situ and satellite
data, because such values probably arose due to measurement or data maintenance errors.
All data providers use accredited and fully certified laboratories, and the methodological
procedures are according to EU standards accepted among member states. Accordingly,
the analytical standards are at high levels, and analytical accuracy represents the state of
the art. Note also that water quality monitoring in Germany is implemented at the federal
state level and, therefore, slight differences in sampling frequency, sampling depths, or
analytical methods (e.g., chlorophyll-a by photometry or by HPLC) emerge when data
from several states are merged.

Satellite measurements are restricted to the surface layer, and the relevant depth range
may be approximated by the Secchi depth [5]. However, WFD prescribes depth-integrated
samples, i.e., a sample mixing the whole water column down to the thermocline. In
order not to lose such samples, we considered all depth-integrated samples which started
from the surface (i.e., only epilimnion samples; no hypolimnion samples), even if the
thermocline was deeper than the Secchi depth. In contrast, where discrete samples had
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been taken, i.e., 0.1 m, 0.5 m, 1 m, etc., for practical reasons, we averaged all available in
situ values between 0–2 m depth at a given sampling site and date. The Secchi depths in
the in situ data ranged from 0.1 to 14.7 m, with a mean of 2.8 and a median of 2 m (SI4,
Figure S2). Therefore, we considered restricting discrete sampling depths to down to 2 m
as appropriate for comparison with the remote sensing data. This very simple approach
worked very well and assures that the upper meters of the waterbody (lake or reservoir)
are representative when compared to satellite observations. Problems may arise in cases of
heavy scum formation, i.e., when the satellite’s view is facing extremely high chlorophyll
concentrations, which are not represented in the in situ data (unless a real surface sample
was taken).

2.3. Remote Sensing Data Processing and Extraction

For the generic approach we followed here, we focused on two recommended work-
flows. The aim here was to enable monitoring, which requires fixed algorithms that are not
adapted to the individual characteristics of each waterbody.

Evaluations were performed on data for chlorophyll-a, Secchi depth, and turbidity
from Sentinel-2 MSI and Sentinel-3 OLCI. For the differences between the instruments on
the two satellites please refer to Supplementary Information SI3. All waterbodies were large
enough to be evaluated by Sentinel-2 MSI. For a waterbody to be evaluated with Sentinel-3
OLCI, we checked for each waterbody whether at least a 5 × 5 contiguous macropixel
would cover the waterbody. However, a pixel touching the shoreline might have been
disturbed by land and might, thus, return values representative of land instead of water
constituents. Therefore, we made sure that each of the 25 pixels did not touch the shoreline
and was not disturbed by land. The choice of a 5 × 5 megapixel is supported by the findings
of Schröder et al. (2024) [30]. This resulted in 38 of the waterbodies being fit for Sentinel-3
OLCI (see column “S3” in Table S1). In detail, a central point was calculated, which was
the furthest point from the entire shoreline. A buffer of 750 m was calculated around this
central point, and this buffer zone was encased by a quadrat with an edge length of 1500 m.
All waterbodies for which the shape file of this encasing quadrat overlapped or cut the
shoreline shape were excluded from further analysis with Sentinel-3 data.

We used data for the years 2016–2020, processed by two alternative commercially
available processing chains that use science-based approaches that are fully published
in the international literature. These two processing chains are (i) the EOMAP Processor
(online processing platform eoapp AQUA®, https://aqua.eoapp.de/, accessed on 15 Au-
gust 2023), referred to as eoapp AQUA from hereon in); and (ii) the Brockmann Consult
Processor (online processing platform Calvalus and here the processing chain dedicated
for CyanoAlert®, https://www.brockmann-consult.de/calbigfe/calvalus.jsp, accessed on
15 August 2023, version 2.22; referred to as CyanoAlert from hereon in). Note that the
underlying signal processing in both cases follows fully published procedures, but the
software implementation in a high-performance environment is the intellectual property of
the companies and is available for scientific or consulting purposes.

CyanoAlert products are generated by different processing steps. The atmospheric cor-
rection and in-water retrieval is performed by the C2RCC processor for the respective sen-
sors (Case 2 Regional Coast Colour [38,39]), while special treatment for cyanobacteria detec-
tion is performed with the MPH algorithm (maximum peak height [40,41]). For pixel identi-
fication (e.g., cloud detection), the IdePix processor is applied for each sensor [42,43]. These
processing elements are available in the open source software SNAP (SeNtinel Application
Platform; https://github.com/senbox-org/snap-engine/blob/master/README.md; ac-
cessed on 15 February 2024). Turbidity is retrieved following the algorithm developed by
Nechad et al. [44,45]. Although these processing steps could in principle also be conducted
independently of CyanoAlert as all software components are open source and free to use
for all, the implementation in CyanoAlert provides high performance, easier application,
and approved workflows. Compared to a rather work-intense implementation of several

https://aqua.eoapp.de/
https://www.brockmann-consult.de/calbigfe/calvalus.jsp
https://github.com/senbox-org/snap-engine/blob/master/README.md
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open source software blocks, state authorities usually prefer a full-fledged, proprietary
implementation, as provided by CyanoAlert.

The eoapp AQUA procedure is deriving water quality data through a radiative trans-
fer model by a purely physics-based approach [46]. The processor underlying eoapp
AQUA is called MIP (Modular Inversion and Processing System) and consists of a sensor-
independent suite of algorithms and databases to derive atmospheric and in-water proper-
ties by taking absorbing and scattering properties of atmosphere and water constituents into
account [47,48]. The model performs all relevant processing steps and applies necessary
corrections, such as surface type detection (land/water/cloud), adjacency, sunglint, and
atmospheric correction. Water quality variables are retrieved by modelling the influence of
their respective optically active components on the measured radiances [47,48].

The workflows based on the products derived by eoapp AQUA and CyanoAlert and
for the in situ data are shown in Figure 2. Chlorophyll values derived from the remote
sensing data were interpreted as chlorophyll-a.
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Figure 2. Workflow of preparing and combining in situ and satellite data. QUT is the quality indicator
in the eoapp AQUA workflow (see text); TUR = turbidity in FNU.

Quality filtering is essential when working with satellite data. Both processors employ
filtering strategies, and we followed their respective recommendations. In the eoapp
AQUA workflow, pixels are assigned a quality indicator which ranks their quality on a
scale from 0 to 100 based on illumination, satellite view angles, atmospheric properties and
concentration ranges. Pixels with a quality below 50 were excluded. Quality filtering in
the CyanoAlert workflow was performed based on the standard quality filter band, which
is either 0 or 1, and is also derived from different aspects related to the image acquisition
conditions. All pixels which lacked quality according to this band were excluded. Note that
whenever one processor filter excludes more or less pixels than the other, the comparison
may end up being based on different data sets. In order to smooth over the strengths and
weaknesses of both algorithms, like Kauer et al. [49], we averaged the results from the two
algorithms in a combined approach assuming that the average of two different processors
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is better than single estimates. We finally want to stress that no further calibration of the
algorithms on the available in situ data was performed and that the processors followed a
naïve approach for retrieving water quality.

Regarding temporal mismatch, we restricted the evaluation procedure to measure-
ments from the same day (in situ and satellite-derived data had to be acquired on the
same day). An even smaller time window would have been preferable, but since the exact
sampling time is not always known for most in situ measurements, this was not possible.
Regarding the spatial scale, we evaluated all valid remote sensing pixels for the whole
waterbody in order to have a waterbody-wide representative value. Previous work [30]
showed that the waterbody-scale evaluation of the satellite data represented observation
data as adequately as local macropixels. Macropixels are, e.g., 3 × 3, 5 × 5 pixels, i.e., 9
or 15 pixels, around the 1 pixel which covers a sampling site, and ensure that single pixel
outliers did not compromise the result.

Some waterbodies are sampled in situ at more than one site. In such cases, only one in
situ sampling site per waterbody was chosen in order to avoid giving waterbodies with
more than one in situ sampling site too much weight. This in situ sampling site was chosen
to be as representative of the whole waterbody as possible, i.e., far from the shore, close
to the center of the waterbody, and close to the deepest point. Remote sensing-derived
values were only considered when at least 30% of the pixels within the waterbody extent
were valid.

The CyanoAlert procedure yields two different results for turbidity measurements for
both Sentinel satellites (-2 and -3), namely turbidity at 665 nm and turbidity at 865 nm; and
two types of chlorophyll-a results for Sentinel-3 [50], while the eoapp AQUA procedure
gives one sensor-independent result for chlorophyll-a and turbidity, respectively. For the
results from CyanoAlert, we decided to use the turbidity algorithm centered around 665 nm
for Sentinel-2, and the one centered around 865 nm for Sentinel-3 after visual inspection of
the ranges of the results. For chlorophyll-a from Sentinel-3 OLCI, we used the “chl_merged”
algorithm, referred to as “C15-M10” in Schaeffer et al. [50]. It relies on the “chl_conc”
algorithm from C2RCC, but also allows for higher concentrations of chlorophyll-a than the
original C2RCC algorithm for chlorophyll-a, and deals better with elevated cyanobacteria
concentrations, both being relevant for many inland waters.

2.4. Statistical Analyses

As a first step, we analyzed results from each processing chain separately and compared
them with in situ values. In the second step, we averaged values from the two processing
chains and analyzed how this combined value fits with the respective in situ measurements.

The variability of all remote sensing-based target variables tend to increase with the
respective variable values when compared to in situ data. For instance, variability in
chlorophyll is usually much higher in waterbodies where high chlorophyll concentrations
were encountered. This pattern is typical in many environmental variables and points to
underlying exponential processes so that a log-transformation leads to homoscedasticity.
Therefore, we used log-transformed target variables for both in situ and satellite-based data.
Thus, the coefficient of determination (R2), slope, bias, and mean absolute error (MAE) were
given for the logarithmically transformed data. This is also the recommended procedure
according to Seegers et al. [51]. In contrast, for direct comparability with other studies, we
presented the RMSE on the untransformed, i.e., linear, data as this was used by many other
researchers (e.g., [52]) and because it retains the units of the measurements, e.g., µg/L for
chlorophyll-a. The RMSE is not appropriate for non-Gaussian error distributions [53] and
is sensitive to outliers, both of which are common features in deriving water properties [51].
The mean absolute error (MAE), in contrast, particularly in the transformed form, is less
sensitive to outliers, is appropriate for non-Gaussian error distributions, and is, therefore,
recommended over the RMSE [51]. The mean bias (MB), from hereon in only called bias, is
a measure of systematic errors [51], i.e., identifies if satellite-derived data are systematically
lower or higher than the in situ data. In contrast to the RMSE, deviances in both the negative
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and positive direction may cancel out, which means that the bias is usually smaller than
the RMSE [46]. It complements the RMSE and MAE, which are insensitive to systematic
errors. In summary, the following error metrics were calculated:

MAE = 10̂

(
∑n

i=1
∣∣log10(satellitei)− log10(in_situi)

∣∣
n

)
(1)

Bias = 10̂
(

∑n
i=1 log10(satellitei)− log10(in_situi)

n

)
(2)

RMSE =

√
∑n

i=1(satellitei − in_situi)
2

n
(3)

R2 =
∑
(

log10

(
ˆsatellitei − log10(averagesatellite

))2

∑
(
log10(satellitei)− log10(averagesatellite)

)2 (4)

slope =
log10

(
ˆsatellite1 − log10

(
ˆsatellite2

)
log10(in_situ1)− log10(in_situ2)

(5)

In Equations (1)–(5) ˆsatellite is the value of the satellite measurement predicted in the
log-log-linear model and satellitei is the i-th observed satellite value. All statistical analyses
and plots were performed using R version 4.2.2 [54].

3. Results

Error measures for the target variables chlorophyll-a, turbidity, and Secchi depth varied
between the two satellites and processing chains. The errors in the single processing chain
evaluations were in many cases—but not in all—higher than the errors in the combined
approach (Figures 3–5, Table 2). Therefore, merging the results from both processing chains
into a combined value often improved the error metrices, indicating that averaging over
processing chains makes the observations more robust. As an example, the waterbody-scale
evaluation of chlorophyll-a for S3-OLCI nicely documents this statement as the MAE values
in the combined case were lower than the ones from separate processing chains (1.9 in
combined versus 2.2 in CyanoAlert and 3.2 in eoapp AQUA) (Figure 4, Table 2).
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Figure 3. Regression between in situ (x axis) and Sentinel-3 OLCI remote sensing Secchi depth values
(y axis) from the waterbody-scale evaluation, values from the same day, on a logarithmic scale,
dots transparent black. (a) eoapp AQUA processing chain, (b) CyanoAlert processing chain, and
(c) combined approach. R2 = determination measure, Slope = regression line slope, MAE = mean av-
erage error, Bias = mean bias; all four based on log transformed data, RMSE = root mean square error,
N = number of measurements. For the results for Sentinel-2, refer to Supplementary Information SI5.
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(c) combined approach. R2 = determination measure, Slope = regression line slope, MAE = mean av-
erage error, Bias = mean bias; all four based on log transformed data, RMSE = root mean square error,
N = number of measurements. For the results for Sentinel-2, refer to Supplementary Information SI5.
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Figure 5. Regression between in situ (x axis) and Sentinel-3 OLCI remote sensing turbidity values
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erage error, Bias = mean bias; all four based on log transformed data, RMSE = root mean square error,
N = number of measurements. For the results for Sentinel-2, refer to Supplementary Information SI5.

Nevertheless, in the combined approach, the different error indices for the target water
quality variables also appeared to be rather high. For example, the RSME for Secchi depth
was about 2 m (1.8 for Sentinel-3 and 2.3 for Sentinel-2) and for chlorophyll-a it was around
20 µg/L. Error quantification for turbidity was not meaningful due to the low sample
sizes. The high error terms characterize the limited overall accuracy of remote sensing
products when applied in a broad scale application and naïve processing, i.e., without local
optimization and based on the diverse sources of in situ data. But at the same time, the
regression analysis also indicated that a basic status assessment of a given waterbody is
possible. For example, whether a given waterbody is more oligotrophic (i.e., high Secchi
depth and low chlorophyll-a) or (vice versa) eutrophic is generally determinable in a
reliable way by remote sensing.
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Table 2. Error measures of the fits between in situ and satellite data from the two processing chains
and the combined version of both (column Combined), for the three variables and the two satellites,
on the waterbody scale. CyanoAlert = CyanoAlert workflow, eoapp AQUA = eoapp AQUA work-
flow; Combined = combination of the CyanoAlert and eoapp AQUA workflows. chl = chlorophyll-a;
tur = turbidity; secchi = Secchi depth. Slope = double logarithmic regression line slope; R2 = deter-
mination measure of the double logarithmic regression line; RMSE = root mean square error of the
linear data; MAE = mean average error in the logarithmic form; MB = mean bias in the logarithmic
form, N = number of measurements.

Workflow eoapp AQUA CyanoAlert Combined

Mission S2 S3 S2 S3 S2 S3

slope

tur 0.8 0.8 0.7 1 0.6 0.8

Variable chl 0.8 0.4 0.7 0.9 0.8 0.8

secchi 0.8 0.5 0.9 0.9 0.8 0.7

R2

tur 0.35 0.44 0.49 0.59 0.43 0.69

Variable chl 0.41 0.28 0.5 0.66 0.63 0.71

secchi 0.57 0.38 0.77 0.8 0.68 0.7

MAE

tur 3.5 2.7 2.2 1.9 2.4 1.9

Variable chl 3.1 3.2 2.2 2.2 2 1.9

secchi 2.2 2.4 1.5 1.6 1.8 1.7

RMSE

tur 14.1 11.2 4.3 15.6 2.5 11.2

Variable chl 34.2 44.2 20.9 30.6 20.7 27.2

secchi 3.7 3 1.8 2 2.3 1.8

MB

tur 0.7 0.4 0.7 0.6 0.6 0.5

Variable chl 0.6 0.5 1.1 1.3 1 1.1

secchi 1.8 2 1.2 0.8 1.5 1.3

N

tur 75 35 70 31 50 23

Variable chl 314 486 289 301 249 269

secchi 323 460 288 269 238 235

The RMSE for the chlorophyll-a data comparison ranged between 20.9 µg/L (CyanoAlert
processing chain; Sentinel-2; Figure 4b; Table 2) and 44.2 µg/L (eoapp AQUA processing
chain; Sentinel-3; Figure 4a; Table 2) and was 20.7 and 27.2 µg/L in the combined versions
for Sentinel-2 and Sentinel-3 OLCI, respectively (Figure 4c; Table 2). Except for the slopes
and the mean bias, for the chlorophyll-a data, the combined versions were always better
(Figure 4 and Figure S4; Table 2).

In situ turbidity was only available mainly from reservoirs. Therefore, the number of in
situ observations was much lower than the number of observations from chlorophyll-a and
Secchi depth. The R2 values were mostly lower than those for the other two variables, and
again improved in the combined version. The RMSE between remote sensing-derived tur-
bidity from Sentinel-2 data and in situ-measured turbidity was 4.3 FNU in the CyanoAlert
processing chain and 14.1 FNU in the eoapp AQUA processing chain (Table 2; Figure S2a,b),
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and decreased to 2.5 FNU when combining the data from the two processing chains, while
for the other error measures, combining did not offer any improvement over the fit from
the CyanoAlert processing chain. For Sentinel-3 values, error measures from the combined
approach largely reflected the error measures from eoapp AQUA (Figures 5 and S2c,d;
Table 2). Note that in all cases, the calculated error metrices for the different approaches are
(partly) based on considerably different numbers of results (N).

Sentinel-2 and Sentinel-3 values from the same day were largely comparable within
a workflow and variable (Figures S6–S8). The combined approach overall did not yield
better results.

4. Discussion

Statistical fit quality between in situ and remote sensing data is sometimes lower
than desirable, due to a range of factors which have been discussed in other contributions
(e.g., [55,56]). In order to address the question of whether the match could still be sufficient
for regular monitoring purposes, the aim was, thus, not to address the hindrances in
evaluating the use of remote sensing for inland water quality assessment per se in detail,
but to test whether satellite data would prove sufficiently robust in validation or evaluation,
as a basis for a harmonized monitoring strategy, e.g., for federal states in Germany. In situ
and remote sensing will always have to be used in a complementary way in order to benefit
from the specific advantages of both strategies [57], e.g., high spatial and temporal coverage
by satellites and analytical accuracy in laboratory-based analysis of in situ samples.

4.1. Atmospheric Correction, Retrieval of Water Constituents, and Contrasting Approaches in
Signal Processing

Using remote sensing data for water quality assessment requires atmospheric correc-
tion because the atmospheric influences can contribute up to 90% of the measured signal at
the satellite sensor [53]. The atmospheric correction algorithms and also further algorithms
for the optical reactivity of the waterbody differ in the two workflows and are, thus, a
source of deviation in the results from the two workflows.

While eoapp AQUA follows a fully physical approach of radiative transfer mod-
elling with sensor-agnostic retrieval of the water constituents in the MIP algorithm [46,47],
CyanoAlert uses artificial neural networks that invert simulated spectra derived from
radiative transfer modelling by using the C2RCC algorithm [37,38], while for turbidity for
specific satellites a semi-empirical algorithm is used. Contrasting elements for both ap-
proaches are accordingly different in the applicability ranges from in principle unrestricted
fully physics-based models to the trained data ranges of neural networks (C2RCC) and the
empirical Nechad algorithm for “coastal” or moderate to turbid conditions. This contrast
can also be seen when we look at the satellite applicability: the retrieval in MIP/eoapp
AQUA is applied in a harmonized way to all investigated sensors, while CyanoAlert uses
sensor-specific versions of the neural networks (see Figure 2).

These contrasting approaches, among other factors, contribute to variability and ex-
plain why the same satellite scene, i.e., exactly the same raw data of a given water body,
result in two different values of the final target variable, e.g., chlorophyll or turbidity.
Nevertheless, both approaches also have similarities, as the underlying model of radiative
transfer are following the physics of radiative transfer, with differences in the implementa-
tion level (e.g., sensor-generic adjacency correction is implemented in MIP). Our results
indicate that it is difficult to decide which of the two processing approaches is the better one,
as this depends on the target variables and even differs among water bodies. Therefore, we
believe that it is not wise to give a generalized recommendation for one specific processor
but rather want to demonstrate how EO-derived water quality variables compare to in situ
data and how the derived information can be used for supporting water quality monitoring.
For this we used the combined approach where values from both processing lines are
averaged. A deeper analysis of the different processing chains would require analyzing
results at the individual waterbody scale in order to identify where deviations from in situ
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values are high or low and whether systematic over- or underestimation occurs. This is
the next step in our research but goes beyond the scope of this paper, where the general
performance is addressed.

4.2. Prerequisites for Validation

For validation to be tractable and reproducible, it should follow protocols, i.e., a
standard of procedure, covering all parts of the validation, on the remote sensing side and
the in situ data side, covering, e.g., macropixel formation [58] and error measures [51]. To
agree on such overarching protocols is an iterative process, initiated, e.g., by the Working
Group on Calibration & Validation (WGCV; https://ceos.org/ourwork/workinggroups/
wgcv/, accessed on 15 August 2023) within the international CEOS (Committee on Earth
Observation Satellites; https://ceos.org/, accessed on 15 August 2023). They define terms
of references [59] and rules for calibration and validation, see, e.g., Pahlevan et al. [52].
Further validations for aquatic products have been written up, e.g., in EUMETSAT [60,61]
or Simis et al. [62].

If a variable, such as chlorophyll-a, is validated for a specific set of algorithms within a
specific workflow, such validation is not universal. The validation will have to be repeated
for every new satellite instrument and new workflow [63]. However, there is an imbalance
in the availability of water quality data compared with, e.g., data on water quantity [55].
This leads to the validation of water quality products lagging behind that of water quantity.

The major prerequisite for validating remote sensing processed data is the in situ data.
To achieve a meaningful validation which is valid for, e.g., waterbodies from different
biogeographical and climatic zones, altitudes, water types etc., a high number of in situ
data from diverse waterbodies is necessary. The in situ data have to be as homogeneous
as possible in terms of sampling procedure and methods [64]. To achieve such a bespoke
data set (in radiometry referred to as fiducial reference data [65]) is costly and is usually
only collected for a limited number of waterbodies, if at all. Instead, monitoring data lend
themselves to such a task (a global compilation for inland waters, which, however, does
not cover Germany well, is, e.g., Lehmann et al. [66]). Here, we used in situ data that were
compiled by authorities according to international standards as ruled by, e.g., the European
Water Framework Directive [19]. The variation and insecurities, error margins, etc., of the in
situ methods are well known and well described in the national and international standards,
e.g., for aquatic chlorophyll-a in the German national standard DIN 38409-60:2019-12 [37]
or ISO 10260 [67] as the international standard (but see below for a discussion on water
quality methods).

4.3. Comparisons between In Situ and Satellite Data

Considering the difficulties in generalizing remote sensing for different waterbodies,
it is hardly surprising that, in general, the fits shown here between in situ and satellite data
were lower than those known from similar studies that focused on either a single or a small
suite of waterbodies by adjusting the algorithms to the respective in situ data [4,11,12,68,69].
The difficulties in generalizing remote sensing for different waterbodies are one reason
why in situ and remote sensing measurements will always be used in a complementary
way [57].

The goodness of fit, R2, in the present study showed a wide range (between 0.18
and 0.81), and the error measures (RMSE, MAE, and bias) were relatively high for both
Sentinel-2 and Sentinel-3 for all investigated characteristics, e.g., the RMSE between in
situ and satellite-derived chlorophyll-a extracted as the combined result between the two
workflows, was up to 58.3 µg/L (Sentinel-2). This is tenfold higher than what Domínguez
Gómez et al. [70] deemed acceptable when comparing the average of 5 samples within
200 m squares with MERIS in the 100 largest reservoirs in Spain, and higher than what,
e.g., Dörnhöfer et al. [4] found for Lake Kummerow (5.1 µg/L). In the current study, data
from over 100 waterbodies within different regions and in different environments were
used. Thus, the RMSE in the current study had to be expected to be higher. RMSE from two

https://ceos.org/ourwork/workinggroups/wgcv/
https://ceos.org/ourwork/workinggroups/wgcv/
https://ceos.org/
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variables (Secchi depth and turbidity), and MAE and bias from all variables (Chlorophyll-a,
Secchi depth and turbidity), were larger than anticipated from studies that focused mostly
on older satellites which have provided longer time series, such as, e.g., MODIS for which
RMSE for chlorophyll-a in Lake Erie was between 1.36 and 14.52 [71]. One such reason is
the differences in recording times between in situ and remote sensing. This is especially true
when and where water quality characteristics change quickly locally on short time scales,
mostly brought about by meteorological dynamics, such as wind influencing the flows,
but also the vertical migration of phytoplankton. Even if the effects are only local, they do
impact on either the in situ site or the whole waterbody median, or both, but not necessarily
in the same way. Such heterogeneity over space and time may lead to the waterbody scale
evaluation of remote sensing data fitting better to in situ data, at least considering the
MAE [30]. The waterbody scale integrates over such small-scale changes that this may lead
to a 3 × 3 macropixel being not representative for a sampling site. Keeping in mind that
we compare an area of at least 100 m2 (10 m resolution of Sentinel-2) with a water sample
of about 1 to 2 L at one position, the representativity of water samples is low in the case of
small-scale changes in the waterbody. Furthermore, the data set comprised waterbodies
from different regions, with different trophic states, different sizes, different depths, and
where especially chlorophyll-a was measured with different in situ methods.

Another reason for differences between in situ and satellite data may be pixels covering
shallow areas. The signal from the bottom of shallow waterbodies or shallow zones, e.g.,
along the shoreline, is not separated from the signal from water contents [72]. Thus, shallow
water depth, unless the algal blooms or other water contents restrict visibility, cannot be
appropriately evaluated with remote sensing [72]. For a strict procedure, all shallow
areas must be excluded. However, in authorities’ monitoring, such shallow areas are not
necessarily known in detail for a given waterbody. Therefore, a workflow applicable to
monitoring of a large number of waterbodies must remain generic or naïve. As mentioned
above, here, the aim was not to find the best individual fit for every single waterbody, but to
check whether a generic approach would yield results of sufficient quality for monitoring
according to regulations.

A further reason for a lack in quality fit is the sun angle. The lower the sun elevation
for a region, the less radiation reaches into the water, and the less radiation is returned to
the instruments onboard the satellites [2]. Thus, zones near the poles, and winter data from
zones with a high seasonality in radiation, are not optimal for remote sensing evaluations in
winter months. This applies to the northern waterbodies in the present study more than to
the southern ones (Table S1). However, since the approach we followed was supposed to be
generic, such individual filtering of scenes per season was not implemented here. Further
measures to improve the fit between in situ and remote sensing data are discussed below.

4.4. Limitations in the In Situ Data Which Become Apparent When Comparing Them to Remote
Sensing Data

Sampling and measuring chlorophyll-a is a complex challenge and carried out using
different methods in the laboratory which usually follow standardized procedures. As an
example, and to illustrate the complexity of the method, there is a known result dependence
on algae taxa. It is easier to extract chlorophyll-a from some taxa than from others [73–75].
The different methods result either in total chlorophyll (chlorophyll-a and chlorophyllides;
when not acidifying, and when not using HPLC), or chlorophyll-a separate from other
derivates, such as divinyl chlorophyll-a derivates, or in differentiating accessory pigments
(e.g., chlorophyll b and c), or degradation products [37]. Interlaboratory comparisons have
resulted in differences in chlorophyll-a measurements of up to 68% (summarized in Seegers
et al. [76]). For the purpose of the approach taken here, i.e., not adapting/calibrating based
on prior knowledge, we assumed that all the chlorophyll-a methods were comparable to a
reasonable degree, and that they are precise and accurate. However, round robins showed
that this is not necessarily the case [77].



Remote Sens. 2024, 16, 3416 14 of 20

Remote sensing for estimating chlorophyll-a does not resolve into taxonomies of
molecules but derives chlorophyll-a values based on data from the radiation measured in
the spectral bands of the sensors onboard of the satellites. The results from remote sensing
depend on the algorithms though, including atmospheric correction, like the laboratory
analysis of chlorophyll depends on the reagents, the instruments, and the skillful handling.
On the other hand, because of the differences in in situ methods and their respective focus
and accuracy, the comparison between in situ and a generic, not adjusted, remote sensing-
derived chlorophyll-a value cannot be expected to be more precise than within a relatively
broad margin.

Several in situ methods exist for measuring turbidity. The results are then either on
the FNU (formazin nephelometric unit) or NTU (nephelometric turbidity unit) scale. While
each specific method is straightforward, their intercomparability is low. Thus, it is not
easily possible to create homogenous in situ data for turbidity when different methods have
been applied. A further difficulty when comparing such in situ data to remote sensing data
is that different remote sensing data workflows result in different units, e.g., the CyanoAlert
workflow resulted in two variables: FNU at 665 nm (used here for Sentinel-2) and FNU
at 865 nm (used here for Sentinel-3), while the eoapp AQUA workflow resulted in one
variable: FTU at 550 nm. Therefore, comparability between any field method and the
remote sensing-derived method is lower than for Secchi depth, and this is most likely one
reason why the error measures were higher for turbidity than for Secchi depth.

4.5. Improving the Fit between In Situ and Satellite Data

Steps are taken to improve the fit between remote sensing data and in situ data, but
most of them are not generalizable [1]. The fit between in situ and remote sensing data can be
improved by several measures that are beyond the scope of this publication: (1) excluding
shore areas and shallow water zones where signal might be disturbed; (2) improved or
dedicated atmospheric correction [52]; (3) manual filtering of scenes where, e.g., sunglint
might not have been recognized by the work flow; (4) excluding scenes from seasons
with low light (i.e., winter); (5) excluding scenes from waterbodies of a certain water
quality which might not lead to good results; (6) improving water retrieval algorithms [77];
(7) excluding values below the detection limit [12,56,78]; (8) using algorithms individually
for each optical water type [17,79,80].

In addition to practical approaches (like points 1 to 5 above), it needs to be noted
that new algorithms are constantly being developed and existing ones are further im-
proved. Such algorithm adaptations focus, e.g., on specific environmental conditions and
lake inherent characteristics, such as water types that have so far not been addressed
adequately [81]. Depending on how the algorithms were developed, i.e., physically or
empirically, algorithms are better adapted to some circumstances than others. Thus, new
developments should take more circumstances into consideration, in a more appropriate
way, e.g., including sub routines for more water types.

Further measures to improve the fit between remote sensing data and in situ data
include excluding values below a level that might be a determination limit. As examples,
studies for specific waterbodies indicate a certain limit of quantification, e.g., Palmer
et al. [82] excluded chlorophyll-a values below 10 µg/L from further analysis with the
fluorescence line height (FLH) algorithm from MERIS data because it was found that the fit
was not sufficient for low chlorophyll-a values. Ogashawara [12] found that remote sensing
algorithms did not perform well for pigment concentrations that were lower than 50 µg/L,
and Dörnhöfer et al. [78] stated that a chlorophyll-a value of around 1 µg/L is too low for a
solid retrieval.

Further approaches that will not be discussed here include dividing the in situ data sets
according to (a) measurement method (e.g., fluorescence versus HPLC versus spectrophoto-
metric chlorophyll-a determination [1]), (b) the physical and hydrographic characteristics of
the waterbodies [14], (c) the “ecoregions” from the WFD [70], the (d) trophic classes [1], or
by (e) region [10], with regions, e.g., being characterized by different rainfall patterns [83].
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All these approaches are applied on a case-by-case basis and cannot be used for a universal
recommendation for authorities concerned with water quality as for how to use remote
sensing for the regular monitoring of waterbodies.

Based on the discussed consequences of using algorithms independent from prior
knowledge of the waterbody, without calibration and further measures to improve the fit
between remote sensing and in situ data, we considered the satellite data in this generic
way to be sufficiently accurate, both for Sentinel-2 and -3, by the resulting error indices.
In some cases, the accuracy was lower than expected, and we discussed possible reasons.
However, the advantages and complementarity of satellite data for spatial information and
higher temporal resolution provides great added value. Thus, the information can also be
included in thematic maps, which are useful for local and regional governments [66] and
show spatial patterns within lakes and among different lakes in a region.

5. Conclusions

We showed that Sentinel-2 and -3 optic properties as processed by the two processing
chains can be used in regular monitoring towards fulfilling, e.g., the requirements by
the Water Framework Directive (WFD; [19]), or the requirements by the bathing water
directory (BWD; [20]). The disadvantages of the Sentinel-2 MSI (low spectral resolution and
low radiometric sensitivity for clear water) and Sentinel-3 OLCI instruments (low spatial
resolution with 300 × 300 m) are outweighed by the advantages of enabling the monitoring
of a large number of waterbodies with a higher frequency than is currently possible by in
situ sampling alone. Ready-to-use data on water quality in terms of Secchi depth, turbidity,
and chlorophyll concentration which result from the workflows of two companies may
thus enable authorities to use them complementary to in situ data without having to invest
in personnel or machinery. A good strategy for integrating satellite data in the monitoring
activities would enable authorities to use the advantages and assets of both techniques for
a comprehensive monitoring program.

Authorities concerned with water quality must decide whether the accuracy is suffi-
cient, depending on the intended purpose on where and how to use the data. The general
approaches that we described here could be applied in further and future endeavors on a
case-by-case basis.

The adoption of remote sensing methods as a permissible analysis tool in the relevant
guidelines would certainly help to simplify the use and implementation of remote sensing
for official end users in authorities concerned with water quality. Future missions with, e.g.,
higher spatio-temporal resolutions, will improve estimating water quality further.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16183416/s1, Table S1: Water body characteristics. O = olig-
otrophic, M = mesotrophic, E = eutrophic, P = polytrophic. Waterbodies with an “x” in the column
“S3” are large enough to be evaluated with Sentinel-3 OLCI. See main text for the derivation. In brief,
a 5 × 5 contiguous macro pixel, i.e., 1500 × 1500 m2, can fit into waterbodies with an “x” in this
column. Figure S1. Overview over the two satellites used and their specifications, along with two
example images from Lindau, Lake Constance, Germany. MSI = Multispectral Instrument; OLCI
= Ocean and Land Color Imager. Figure S2. Boxplot of the Secchi depths in the in situ data. The
upper whisker extends here from the upper line of the box to the largest value, with the whisker
not being further than 1.5 times the inter-quartile range from the upper line of the box. The inter-
quartile range is the distance between the first and third quartiles. The lower whisker extends to the
smallest value which is maximum 1.5 times the inter-quartile range. Outliers are points outside of
the inter-quartile range. They are plotted as separate points. Figure S3. Regression between in situ
(x axis) and Sentinel-2 MSI remote sensing Secchi depth values (y axis) from the whole water body,
values from the same day, on a logarithmic scale. (a), eoapp AQUA processing chain, (b) CyanoAlert
processing chain, (c) combined approach. R² = Determination measure, Slope = regression line slope,
MAE = Mean average error, all three based on log transformed data, RMSE = root mean square error,
Bias =mean bias from the untransformed data, N = number of measurements. For the results for
Sentinel-3, refer to Figure 3 of the main paper. Figure S4. Regression between in situ (x axis) and
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Sentinel-2 remote sensing chlorophyll-a values (y axis) from the whole water body, values from the
same day, on a logarithmic scale. (a) eoapp AQUA processing chain, (b) CyanoAlert processing
chain, (c) combined approach. R² = Determination measure, Slope = regression line slope, MAE
= Mean average error, all three based on log transformed data, RMSE = root mean square error,
Bias =mean bias from the untransformed data, N = number of measurements. For the results for
Sentinel-3, refer to Figure 4 of the main paper. Figure S5. Regression between in situ (x axis) and
Sentinel-2 remote sensing turbidity values (y axis) from the whole water body, values from the same
day, on a logarithmic scale. (a) eoapp AQUA processing chain, (b) CyanoAlert processing chain,
(c) combined approach. R² = Determination measure, Slope = regression line slope, MAE = Mean
average error, all three based on log transformed data, RMSE = root mean square error, Bias =mean
bias from the untransformed data, N = number of measurements. For the results for Sentinel-3,
refer to Figure 5 of the main paper. Figure S6: Regression between remote sensing Secchi depth
values from the waterbody-scale Sentinel-2 (x axis) and Sentinel-3 (y axis), values from the same
day, on a logarithmic scale. (a) eoapp AQUA processing chain, (b) CyanoAlert processing chain,
(c) combined approach. R² = Determination measure, Slope = regression line slope, MAE = Mean
average error, Bias = mean bias; all four based on log transformed data, RMSE = root mean square
error, N = number of measurements. Figure S7. Regression between remote sensing chlorophyll-a
values from the waterbody-scale Sentinel-2 (x axis) and Sentinel-3 (y axis), values from the same
day, on a logarithmic scale. (a) eoapp AQUA processing chain, (b) CyanoAlert processing chain,
(c) combined approach. R² = Determination measure, Slope = regression line slope, MAE = Mean
average error, Bias = mean bias; all four based on log transformed data, RMSE = root mean square
error, N = number of measurements. Figure S8. Regression between remote sensing turbidity values
from the waterbody-scale Sentinel-2 (x axis) and Sentinel-3 (y axis), values from the same day, on a
logarithmic scale. (a) eoapp AQUA processing chain, (b) CyanoAlert processing chain, (c) combined
approach. R² = Determination measure, Slope = regression line slope, MAE = Mean average error,
Bias = mean bias; all four based on log transformed data, RMSE = root mean square error, N = number
of measurements.
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